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The perspective transform basically turns space inside out. 

Most people don’t have an intuitive feel for what this does 

to a shape, so I will try to provide one. 

Most of the transformations used in computer graphics are 
pretty boring: rotations, scales, translations, and even shears. 
But for pure weirdness, you can’t top the perspective transfor- 
mation. Most people don’t have an intuitive feel for what this 
transform does to a shape, so in this month’s column I will try 
to provide one. This has practical applications in selecting 
near and far clipping planes to avoid depth resolution prob- 
lems with many types of rendering algorithms. But to under- 
stand perspective, we will first have to review some 
interesting topological properties of the space represented by 
homogeneous coordinates. 

Homogeneous coordinate representation 
First. let’s review how homogeneous coordinates work. We 

represent a 3D point in what I’ll call real space, ( X ,  Y ,  Z ) ,  as a 
four-element vector (x. y .  z .  w )  in homogeneous space. To 
help distinguish real space from homogeneous space, I’ll write 
real-space coordinates in capitals and homogeneous-space co- 
ordinates in lower case. The relation between them is 

(Notice that many different homogeneous space vectors can 
represent the same real-space point.) Even though we might 
have points represented as a four-vector during some of the 
processing, we ultimately will need to convert back to real 
space by dividing out the w component. Transformations con- 
sist of multiplying a point by a 4 x 4 matrix. By manipulating 
various elements in the matrix. we can rotate. scale, shear, 
translate, and (our favorite) perform a perspective projection. 

Moebius space 
One of the interesting features of homogeneous coordi- 

nates is that they provide a computationally tractable way to 
represent points that are infinitely far away. For example, con- 
sider the point (1.0.0, w). This represents the real-space point 
( l h .  0. 0). If we make the value of u~ smaller and smaller. then 
the point’s Xcoordinate gets bigger. Ultimately. if w reaches 0, 
we have a point with an infinitely large Xcoordinate. The ho- 
mogeneous formulation, however, is simply (1,0,0,0);  these 
values are perfectly ordinary and easy to deal with inside a 

computer. All points with w = 0 are at infinity and form what 
is called the plane at infinity. Of course, we can’t convert these 
values back to real-space points because we can’t divide the 
coordinates by w, but we can still perform geometrical calcula- 
tions with them if we leave them in the form (x, y .  z ,  0). 

Now let’s look at what happens if w becomes negative, say, 
-0.1. The real space analog of (1,0,0, w )  becomes (-10, 0,O). 
In other words, the point “wraps around infinity” and comes 
back in from the negative direction. In this scheme, therefore, 
it makes sense to say that the point at infinity in the positive di- 
rection, (1, 0, 0, 0), is the same as the point a t  infinity in the 
negative direction. (-1,O. 0, 0). Points at the top of the uni- 
verse wrap around to the bottom; points at the right wrap 
around to the left. 

At first this overflow property might tempt you to say that 
the space formed by homogeneous coordinates is a toroidal 
universe, like the universe formed by overflow of integer coor- 
dinates. But the homogeneous universe is different. Consider 
Figure 1. where I labeled several infinite points in the X Y  
plane with their negative counterparts. When you tie point A 
with A’. B with B’, C with C’, and so forth, you get a twist in 
the fabric of space when it connects around infinity. The shape 
formed when you do this with the 2D plane of Figure 1 is 

A‘ 
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Figure 1. Points at infinity. 
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called aprojectiveplane. This. together with the torus and the 
Klein bottle, is one of the three topological ways to tie 2D 
space together. Several pictures illustrating these shapes ap- 
pear in Steven Barr’s really fun book Experiments in Topol- 
ogy’ and in Rich Riesenfeld’s article, “Homogeneous 
Coordinates and Projective Planes in Computer Graphics.”’ 

It’s important to keep this Moebius twist in mind when try- 
ing to understand the homogeneous perspective transform, 
since that transform does, indeed, move points through infinity. 

To better understand how this Moebius twist affects homo- 
geneous shapes in real space, look at Figure 2. You should see 
four triangles. See them? Well, the one in the center is obvi- 
ous. The other three straddle the plane at  infinity, and I’ve col- 
ored them in three different shades of gray. This diagram also 
illustrates that there are two possible line segments connect- 
ing any two points. Look at points A and B. One line segment, 
called an internal segment, starts at A and moves to the right 
to point B. The other segment starts at B. moves to the right, 
wraps around infinity, comes in from the left, and terminates 
at A. This is called an external segment. In the homogeneous 
universe. both these segments are equally valid. Finally, note 
how the Moebius twist along the external segment keeps the 
proper triangle colors connected. 

Coordinate systems 
There are four coordinate spaces that I’m going to discuss 

here. Let me give explicit names to each space and to a canoni- 
cal point in that space. 

1. 3D: Real space before the perspective transform, ( X .  Y ,  Z )  
2. 3DH: Homogeneous space before perspective. We usually 

form this by appending a w = 1 coordinate to the end of 
each real-space vector, so a point is ( X .  Y ,  Z ,  1). Thus, ob- 
jects in this space typically lie in the w = 1 hyperplane of 
4D space. 

3. 3DHP: Homogeneous space after perspective. Here ob- 
jects no longer lie in the w = 1 hyperplane and, thus, have 
the general coordinates (xs, y,. z,, w\). 

4. 3DP: Real space after perspective. This is just the above 
space with the w, coordinate divided out. This space is 
variously called screen space or perspective space. A point 
has the coordinates (X3.  Y5. Z,). 

Whenever I draw a diagram in this article. I will label it with 

Figure 2. Four triangles. Three of them straddle the plane at infinity. 

Figure 3. Perspective geometry. 

these coordinate system names. The most interesting such dia 
grams directly compare the shape of an object in 3D space to  
its distortion into 3DP space. The main purpose of this article 
is to provide an intuitive feel for what that distortion is. 

Simple perspective 
It turns out that the version of the perspective transform 

that’s easiest to  understand is not the version typically used in 
applications. Nevertheless, to help us understand the trans- 
form, I’ll start with this simple version, and I’ll relate it to  the 
more useful form later. 

Let’s derive a simple perspective transform from the geome- 
try in Figure 3, where the eye is a distance D in front of the ori- 
gin. For an arbitrary point ( X ,  Y ,  Z )  in space, we want to find 
its perspective projection onto the X Y  plane, which we will 
call (Xs.  YT).  Using similar triangles. we get 

and 

Y ,  Y 
D - Z + D  

so 

and 

y Y 
( - (Z/D + 1 )  

This by itself is not a linear transform. We can, however, piggy- 
back the division onto the homogeneous division by defining 

X - X - -  ’ - (Z/D + 1) - w, 
and 
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Figure 4. Postperspective Z versus preperspective Z .  

0 

-D 

-4D -3D -2D -D 0 D 2D 3D 4D 

We can define Z,  symmetrically as 

SO 

(x, yr zr w,) = (A’, Y. Z. Z/D + 1) 

Now we can express this as a homogeneous matrix multiplica- 
tion 

( X ~ . y s . i r . w r ) = ( X , Y , Z , l ) O  F ; ;  vD I] = ( X , Y , Z , 1 ) P  

In the homogeneous notation scheme, any column vector 
represents a plane. In particular, each column of a transforma- 
tion matrix represents a plane. The right column of the ma- 
trix, (0, 0, l/D, l)‘, represents the plane Z = -D. This plane 
contains all the points that the matrix will map to w = 0. That 
is. Z = -D is the plane that gets transformed to  the plane at  in- 
finity. In general. you will combine a perspective matrix with 
other viewing and modeling transformations, making the 
right-hand column have four arbitrary values. But whatever 
its contents. the right-hand column, interpreted as a plane, 
will be the plane containing the eyepoint and perpendicular to 
the line of sight. 

What does it all mean? 
We’ve designed the matrix to generate the correct values 

for X, and Y,. But it’s the Z ,  values it generates that are inter- 
esting. Let’s play around with these values to see what hap- 
pens to 3D shapes subjected to this transform. 

Cherrhez la point 

It transforms according to  the equation 
Let’s start by looking at what happens to the Z coordinate. 

eyepoint 

I I ‘  
Figure 5. The picket fence in perspective. 

A plot of this function appears in Figure 4. Note that when 
Z is infinite. Z, = D.  The transformation of certain key points 
is particularly illuminating: 

( X .  Y .  0, 1)P= (X, Y ,  0, 1) 

This means that points in the i = 0 plane-the plane of the 
screen-don’t move. 

(0,0, -D. I )P = (0.0, -D. 0) 

This means that the eyepoint moves to infinity. 

This means that a point infinitely far forward becomes a local 
point. 

Picket fence 

Another way to look at this is to see what happens to a 
bunch of equally spaced parallel lines perpendicular to  the 
line of sight. As shown in Figure 5. they transform to parallel 
lines of different lengths and unequal spacing. 

Homogeneous space interpretation 

In homogeneous space. the perspective transform is a sim- 
ple shear in the w direction. Figure 6 shows this process for 
the wz slice of homogeneous space. Points in 3DH space (with 
w = 1) shear up and down. forming 3DHP space. Then they 
project back onto w = 1 to  give 3DP. Note how the eyepoint, 
the Z = 0 point, and the Z = -point transform. 

Figure 6. The homogeneous view of the perspective transform. 
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Now, how about X and Y? Look at Figure 7. Here I just 
plotted x, z ,  and w ;  the y coordinate operates similarly to  x. 
We start with a square, seen edge on. Perspective multiplica- 
tion shears the square in w. Dividing out the w distorts the 
square into a trapezoid. 

ing it into the frustum of a pyramid. Note that this diagram 
shows the real 3 D  space transformed to  the real 3DP space. 

Region mapping 

The ultimate understanding of this transformation comes 
from Figure 9. Figure 9a shows several regions in the YZ slice 
of 3 D  space, and Figure 9b shows how they get distorted in 
3DP space. The Y axis (at Z = 0) doesn’t move. Region B, 
stretching from the screen to infinity, maps to the finite rectan- 
gular region B’. The point of the viewing pyramid (the eye- 
point) moves to infinity, so the triangular region A transforms 
to the infinite rectangle A’. Regions H,  J ,  E. and D bend ap- 
propriately. The interesting thing is to  look at stuff that 
started out behind the eye: regions C. G. and F. These regions 
”wrap around infinity” and come back in front of the old infi- 
nite plane. Notice that, reading from the top down, regions G, 
C. and F map into regions G’, C’, and F‘reading bottom up, 
This is because of the Moebius property of homogeneous co- 
ordinates. 

A better matrix 

In Figure 8 you see the same thing applied to a cube, turn- 

When planning a scene, you generally specify the view in 
terms of camera location and viewing direction. You then 
build up a viewing transformation by translating the camera 
position to the origin and rotating the viewing direction to 
point down the Z axis. Then. in order to use the transform we 
derived here. you must translate the eyepoint D units back- 
ward in Z to place the eyepoint at Z = -D. The following 
more convenient primitive perspective matrix has this move 
built in: 

1 0  0 0 1 0 0  

0 0 1 0 0 0 1 1 / D - O 0  1 
0 0 - D l 0 0 0  0 0 - D  0 

1 0 1 0 ; Y :: ,il 
The matrix on the right performs eye-at-origin perspective. 
Note that its rightmost column, (0, 0,1/D. O)‘, is the plane z = 0 
that will now transform to the plane at infinity. 

It’s also convenient to specify the field of view in terms of 
the angle,fov. a t  the apex of the view pyramid. A screen 
stretching from +I to -1 viewed from distance D has 

Figure 7. The homogeneous view of a square’s transform. 

Figure 8. The perspective transform of a cube. 

eyepoint 

j3D/ 

The net effect of our new perspective matrix is to map the 
3D point ( X ,  Y ,  Z )  to the 3 D H  point 

Note that the effect of a change in the field of view on X ,  
and Y., is just a simple scaling. In other words, changing the 
field of view doesn’t change the shape of any objects on the 
screen: it just scales the image uniformly so that more or less 
of the environment fits within the screen boundaries. 

Depth information 
Many rendering algorithms use the Z,  values that come out 

of this transformation to do  depth comparisons, so it’s good to 
have some idea of the range of values this transformation can 
have. Let’s see what happens to a few key Z coordinate values 
under this new transform. Z coordinates that start at infinity 
map to Z,  = D ,  and Z coordinates that start out a t  +D map to 
Z,, = 0. Any points that start out closer to the eye than Z = + D  
map to some negative value of Z.,. Depending on how near 
the eye it is. a point can map to a rather enormous negative Z, 
value. The eye itself, of course. maps to minus infinity. Objects 
very close to the eye might generate a divide error if the quo- 
tient of z ,  and w, is too big for a floating-point number. This is 
a nuisance. How can we avoid it‘? Typically we use a clipping 
plane to remove all objects nearer than a certain distance. 

But close objects that generate divide errors are not the big- 
gest problem. The biggest problem is distant objects. What 
happens to  the resolution in Zfor  objects that are far from the 
eye? Let’s look at a numerical example. Suppose the field of 
view is about 53 degrees. giving a value of D = 2. Suppose that 
two points on a viewed object are at distances 2 = 500 and 
Z = 501. The perspective transform moves these to the posi- 
tions 

and 

D =cot  (e) Z, = 2 ~ = 1.992016 
p 0 ;  ’1 
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Figure 9. Which reginns map to where. 

This really starts to push the resolvable limits of single-preci- 
sion floating-point numbers. And using double-precision num- 
bers is the cowardly approach. 

We can do  everything in single precision if we know the ap- 
proximate range of Z values (relative to the eye) for objects in 
our scene. We just scale and translate the postperspective %, 
values to spread more uniformly over the range 0 to I .  The 
easiest way to  specify this scale and translation is in terms of 
two Z values in preperspective (3D) space. We'll call these Z,, 
for the near value and Zffor  the far value. We then calculate 
the scale and transformation that maps these values to 0 and 
1, respectively. in 3DP space. A scale and translation in Z will 
only modify the third column of the matrix. so let's solve for 
the matrix elements that do  the desired mapping. A point on 
the near plane maps to  

E = -AZ,, 

We want this to map to Z ,  = 1, so its z and w components must 
be equal. This gives us 

The resultant matrix maps Z,, to 0, Zf to 1, and Z = m to 
Zr/ (Zf-  ZJ. 

In my column "Nested Transformations and Blobby Man" 
(CG&A, October 1987, pp. 61-66), I showed this same matrix, 
but I wrote it a bit differently. To get to the form used in that 
article, just multiply the above matrix by the constant factor 
D sin ( f ov i2 )  = cos ( fov/2)  to get jl: d :'] 

0 0 -QZ,, 0 

where 

s = sin ( , fov/2)  
c = cos (,fov/ 2) 

Q = --s-- 
1 - Z,,iZf 

I 
YS 

13DI 
a b 

-I.;.s 
old plane 

1 3 ~ ~ ]  at infinity 
I 

There are two practical reasons for this way of specifying 
the matrix. First. if the user specifies a field of view of zero de- 
grees. the program will not blow up by attempting to calculate 
an infinite cotangent. (Admittedly, though, the matrix will be 
a bit weird.) Second, if the user wants to use an infinite value 
for %, (a perfectly reasonable thing to do). the expression for 
Q above reduces nicely to  Q = s. 

Now that we have the handles Z,, and %[to play with, let's 
see how they solve our resolution problem. If we use the fairly 
loose bounds around our object of Z,, = 400 and Zf = 600. the 
perspective matrix gives us 

You can check that Z = 400 maps to Z ,  = 0 and Z = 600 maps 
to Z,  = 1.  The Z values of SO0 and SO1 map respectively into 
Z, values of0.6 and 0.6048. which are much more readily dis- 
tinguishable. 

The location of Z,, and %/are  usually associated with near 
and far clipping planes. The problem is that users typically 
don't want anything clipped off in the near and far directions. 
so they make Z,, very small and %I very large. Making Zjlarge. 
or even infinite. doesn't really cause problems, but making Z,, 
small does. It basically defeats the purpose of our new formu- 
lation. cramming the objects in the scene into a depth range 
very close to Z, = 1. The depth resolution available to the ren- 
dering algorithm is then completely lost. I have seen a lot of 
people struggle with this. My advice is to place Z?, as far away 
as you can manage. In fact. for some projects I have had to  ani- 
mate the value of Z,, to track an object as it flies around on the 
screen. 

Clipping implications 

Line Clipping," CG&A, January 1991. pp. 98-105). I wrote 
about a line-clipping algorithm that operated with the per- 
spective transformation we derived here. Now that we have a 
better understanding of homogeneous perspective. I want to 
clear up a few statements made i n  that article. 

First. near and far clipping are optional. We must still. how- 
ever. specify a value for Z,, and %,. After all. . s~nie  value of Z is 
going to map to Z, = 0. and .some other value of Z is going to 
map to Z,  = I .  We can't do anything about that. But it's not 

In an earlier article ("A Trip Down the Graphics Pipeline: 
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necessary to clip to  these planes. You do. however, need to bc 
prepared to detect and avoid overflow for objects that come 
close to the eye and produce large negative values of Z,. but 
this is actually rather rare. You might as well do  the clipping, 
though. The overhead of clipping at Z,, and Z, as described in 
the earlier column is pretty negligible. 

Second, we can clip properly u f k r  doing the u.' division. that 
is. in 3DP space rather than in 3DHP space. 1 don't recom- 
mend it. but it'spossihle. The reason we usually think it's im- 
possible is as follows. Consider a line that has one endpoint in 
front of the eye and one endpoint behind the eye. That is. the 
line runs off the top of the screen. as in one of the long edges 
of the wide rectangle in Figure 9. After the perspective multi- 
plication. the endpoint behind the eye will have a negative 
value for w,. If you clip in 3DHP space, the endpoint will have 
y, > ~ $ 5 ~ .  and the line will be clipped properly. When you look 
at the line. you will see it disappear off the top of the screen. 
Now suppose you did the homogeneous division before clip- 
ping. The point behind the eye will have wrapped around in- 
finity and may reappear with Y coordinates on the visiblc 
portion of the screen. generating an external line segment. 
This situation has traditionally been thought to be indistin- 
guishable from an internal segment with both endpoints visi- 
ble in front of the eye. There is a difference. however. The 
behind-the-eye point has wrapped around infinity and has a Z 

coordinate greater than Zr/(Zr- ZJ. To determine if a line 
segment that has two visible endpoints is internal (requiring 
no clipping) or external (requiring clipping). just test if the Z 
coordinates of its two endpoints straddle Zf/(Zf-  ZJ. This is 
more trouble than it's worth perhaps. but it's possible. 

Summary 
The perspective transform turns space inside out. Flat poly- 

gons might have their outlines distorted but they remain flat. 
You can therefore use rendering algorithms in 3DP space that 
linearly interpolate Z values across polygons. The plane Z = 0 
(the eye plane) becomes the plane at infinity; the plane at  in- 
finity becomes Z ,  = Zi/Zi  - Z,,. Shapes that start out strad- 
dling the eye plane split in two. 

From a user's point of view. the important message here is 
to make the value of Z,, as big as possible. This makes it easier 
for the renderer you are using to do depth comparisons. 3 
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