
JIM BLINN’S C O R N E R

A Trip Down The Graphics Pipeline:
The Homogeneous Perspective Transform
James F. Blinn, California Institute of Technology

The perspective transform basically turns space inside out.

Most people don’t have an intuitive feel for what this does

to a shape, so I will try to provide one.

Most of the transformations used in computer graphics are
pretty boring: rotations, scales, translations, and even shears.
But for pure weirdness, you can’t top the perspective transfor-
mation. Most people don’t have an intuitive feel for what this
transform does to a shape, so in this month’s column I will try
to provide one. This has practical applications in selecting
near and far clipping planes to avoid depth resolution prob-
lems with many types of rendering algorithms. But to under-
stand perspective, we will first have to review some
interesting topological properties of the space represented by
homogeneous coordinates.

Homogeneous coordinate representation
First. let’s review how homogeneous coordinates work. We

represent a 3D point in what I’ll call real space, (X , Y , Z) , as a
four-element vector (x. y . z . w) in homogeneous space. To
help distinguish real space from homogeneous space, I’ll write
real-space coordinates in capitals and homogeneous-space co-
ordinates in lower case. The relation between them is

(Notice that many different homogeneous space vectors can
represent the same real-space point.) Even though we might
have points represented as a four-vector during some of the
processing, we ultimately will need to convert back to real
space by dividing out the w component. Transformations con-
sist of multiplying a point by a 4 x 4 matrix. By manipulating
various elements in the matrix. we can rotate. scale, shear,
translate, and (our favorite) perform a perspective projection.

Moebius space
One of the interesting features of homogeneous coordi-

nates is that they provide a computationally tractable way to
represent points that are infinitely far away. For example, con-
sider the point (1.0.0, w). This represents the real-space point
(l h . 0. 0). If we make the value of u~ smaller and smaller. then
the point’s Xcoordinate gets bigger. Ultimately. if w reaches 0,
we have a point with an infinitely large Xcoordinate. The ho-
mogeneous formulation, however, is simply (1,0,0,0); these
values are perfectly ordinary and easy to deal with inside a

computer. All points with w = 0 are at infinity and form what
is called the plane at infinity. Of course, we can’t convert these
values back to real-space points because we can’t divide the
coordinates by w, but we can still perform geometrical calcula-
tions with them if we leave them in the form (x, y . z , 0).

Now let’s look at what happens if w becomes negative, say,
-0.1. The real space analog of (1,0,0, w) becomes (-10, 0,O).
In other words, the point “wraps around infinity” and comes
back in from the negative direction. In this scheme, therefore,
it makes sense to say that the point at infinity in the positive di-
rection, (1, 0, 0, 0), is the same as the point a t infinity in the
negative direction. (-1,O. 0, 0). Points at the top of the uni-
verse wrap around to the bottom; points at the right wrap
around to the left.

At first this overflow property might tempt you to say that
the space formed by homogeneous coordinates is a toroidal
universe, like the universe formed by overflow of integer coor-
dinates. But the homogeneous universe is different. Consider
Figure 1. where I labeled several infinite points in the X Y
plane with their negative counterparts. When you tie point A
with A’. B with B’, C with C’, and so forth, you get a twist in
the fabric of space when it connects around infinity. The shape
formed when you do this with the 2D plane of Figure 1 is

A‘
i

/
B‘ D

\

Figure 1. Points at infinity.

May 1993 75

called aprojectiveplane. This. together with the torus and the
Klein bottle, is one of the three topological ways to tie 2D
space together. Several pictures illustrating these shapes ap-
pear in Steven Barr’s really fun book Experiments in Topol-
ogy’ and in Rich Riesenfeld’s article, “Homogeneous
Coordinates and Projective Planes in Computer Graphics.”’

It’s important to keep this Moebius twist in mind when try-
ing to understand the homogeneous perspective transform,
since that transform does, indeed, move points through infinity.

To better understand how this Moebius twist affects homo-
geneous shapes in real space, look at Figure 2. You should see
four triangles. See them? Well, the one in the center is obvi-
ous. The other three straddle the plane at infinity, and I’ve col-
ored them in three different shades of gray. This diagram also
illustrates that there are two possible line segments connect-
ing any two points. Look at points A and B. One line segment,
called an internal segment, starts at A and moves to the right
to point B. The other segment starts at B. moves to the right,
wraps around infinity, comes in from the left, and terminates
at A. This is called an external segment. In the homogeneous
universe. both these segments are equally valid. Finally, note
how the Moebius twist along the external segment keeps the
proper triangle colors connected.

Coordinate systems
There are four coordinate spaces that I’m going to discuss

here. Let me give explicit names to each space and to a canoni-
cal point in that space.

1. 3D: Real space before the perspective transform, (X . Y , Z)
2. 3DH: Homogeneous space before perspective. We usually

form this by appending a w = 1 coordinate to the end of
each real-space vector, so a point is (X . Y , Z , 1). Thus, ob-
jects in this space typically lie in the w = 1 hyperplane of
4D space.

3. 3DHP: Homogeneous space after perspective. Here ob-
jects no longer lie in the w = 1 hyperplane and, thus, have
the general coordinates (xs, y,. z,, w\).

4. 3DP: Real space after perspective. This is just the above
space with the w, coordinate divided out. This space is
variously called screen space or perspective space. A point
has the coordinates (X3. Y5. Z,).

Whenever I draw a diagram in this article. I will label it with

Figure 2. Four triangles. Three of them straddle the plane at infinity.

Figure 3. Perspective geometry.

these coordinate system names. The most interesting such dia
grams directly compare the shape of an object in 3D space to
its distortion into 3DP space. The main purpose of this article
is to provide an intuitive feel for what that distortion is.

Simple perspective
It turns out that the version of the perspective transform

that’s easiest to understand is not the version typically used in
applications. Nevertheless, to help us understand the trans-
form, I’ll start with this simple version, and I’ll relate it to the
more useful form later.

Let’s derive a simple perspective transform from the geome-
try in Figure 3, where the eye is a distance D in front of the ori-
gin. For an arbitrary point (X , Y , Z) in space, we want to find
its perspective projection onto the X Y plane, which we will
call (Xs. YT). Using similar triangles. we get

and

Y , Y
D - Z + D

so

and

y Y
(- (Z/D + 1)

This by itself is not a linear transform. We can, however, piggy-
back the division onto the homogeneous division by defining

X - X - - ’ - (Z/D + 1) - w,
and

76 IEEE Computer Graphics & Applications

Figure 4. Postperspective Z versus preperspective Z .

0

-D

-4D -3D -2D -D 0 D 2D 3D 4D

We can define Z, symmetrically as

SO

(x, yr zr w,) = (A’, Y. Z. Z/D + 1)

Now we can express this as a homogeneous matrix multiplica-
tion

(X ~ . y s . i r . w r) = (X , Y , Z , l) O F ; ; vD I] = (X , Y , Z , 1) P

In the homogeneous notation scheme, any column vector
represents a plane. In particular, each column of a transforma-
tion matrix represents a plane. The right column of the ma-
trix, (0, 0, l/D, l)‘, represents the plane Z = -D. This plane
contains all the points that the matrix will map to w = 0. That
is. Z = -D is the plane that gets transformed to the plane at in-
finity. In general. you will combine a perspective matrix with
other viewing and modeling transformations, making the
right-hand column have four arbitrary values. But whatever
its contents. the right-hand column, interpreted as a plane,
will be the plane containing the eyepoint and perpendicular to
the line of sight.

What does it all mean?
We’ve designed the matrix to generate the correct values

for X, and Y,. But it’s the Z , values it generates that are inter-
esting. Let’s play around with these values to see what hap-
pens to 3D shapes subjected to this transform.

Cherrhez la point

It transforms according to the equation
Let’s start by looking at what happens to the Z coordinate.

eyepoint

I I ‘
Figure 5. The picket fence in perspective.

A plot of this function appears in Figure 4. Note that when
Z is infinite. Z, = D. The transformation of certain key points
is particularly illuminating:

(X . Y . 0, 1)P= (X, Y , 0, 1)

This means that points in the i = 0 plane-the plane of the
screen-don’t move.

(0,0, -D. I)P = (0.0, -D. 0)

This means that the eyepoint moves to infinity.

This means that a point infinitely far forward becomes a local
point.

Picket fence

Another way to look at this is to see what happens to a
bunch of equally spaced parallel lines perpendicular to the
line of sight. As shown in Figure 5. they transform to parallel
lines of different lengths and unequal spacing.

Homogeneous space interpretation

In homogeneous space. the perspective transform is a sim-
ple shear in the w direction. Figure 6 shows this process for
the wz slice of homogeneous space. Points in 3DH space (with
w = 1) shear up and down. forming 3DHP space. Then they
project back onto w = 1 to give 3DP. Note how the eyepoint,
the Z = 0 point, and the Z = -point transform.

Figure 6. The homogeneous view of the perspective transform.

May 1993 77

Now, how about X and Y? Look at Figure 7. Here I just
plotted x, z , and w ; the y coordinate operates similarly to x.
We start with a square, seen edge on. Perspective multiplica-
tion shears the square in w. Dividing out the w distorts the
square into a trapezoid.

ing it into the frustum of a pyramid. Note that this diagram
shows the real 3 D space transformed to the real 3DP space.

Region mapping

The ultimate understanding of this transformation comes
from Figure 9. Figure 9a shows several regions in the YZ slice
of 3 D space, and Figure 9b shows how they get distorted in
3DP space. The Y axis (at Z = 0) doesn’t move. Region B,
stretching from the screen to infinity, maps to the finite rectan-
gular region B’. The point of the viewing pyramid (the eye-
point) moves to infinity, so the triangular region A transforms
to the infinite rectangle A’. Regions H, J , E. and D bend ap-
propriately. The interesting thing is to look at stuff that
started out behind the eye: regions C. G. and F. These regions
”wrap around infinity” and come back in front of the old infi-
nite plane. Notice that, reading from the top down, regions G,
C. and F map into regions G’, C’, and F‘reading bottom up,
This is because of the Moebius property of homogeneous co-
ordinates.

A better matrix

In Figure 8 you see the same thing applied to a cube, turn-

When planning a scene, you generally specify the view in
terms of camera location and viewing direction. You then
build up a viewing transformation by translating the camera
position to the origin and rotating the viewing direction to
point down the Z axis. Then. in order to use the transform we
derived here. you must translate the eyepoint D units back-
ward in Z to place the eyepoint at Z = -D. The following
more convenient primitive perspective matrix has this move
built in:

1 0 0 0 1 0 0

0 0 1 0 0 0 1 1 / D - O 0 1
0 0 - D l 0 0 0 0 0 - D 0

1 0 1 0 ; Y :: ,il
The matrix on the right performs eye-at-origin perspective.
Note that its rightmost column, (0, 0,1/D. O)‘, is the plane z = 0
that will now transform to the plane at infinity.

It’s also convenient to specify the field of view in terms of
the angle,fov. a t the apex of the view pyramid. A screen
stretching from +I to -1 viewed from distance D has

Figure 7. The homogeneous view of a square’s transform.

Figure 8. The perspective transform of a cube.

eyepoint

j3D/

The net effect of our new perspective matrix is to map the
3D point (X , Y , Z) to the 3 D H point

Note that the effect of a change in the field of view on X ,
and Y., is just a simple scaling. In other words, changing the
field of view doesn’t change the shape of any objects on the
screen: it just scales the image uniformly so that more or less
of the environment fits within the screen boundaries.

Depth information
Many rendering algorithms use the Z, values that come out

of this transformation to do depth comparisons, so it’s good to
have some idea of the range of values this transformation can
have. Let’s see what happens to a few key Z coordinate values
under this new transform. Z coordinates that start at infinity
map to Z, = D , and Z coordinates that start out a t +D map to
Z,, = 0. Any points that start out closer to the eye than Z = + D
map to some negative value of Z.,. Depending on how near
the eye it is. a point can map to a rather enormous negative Z,
value. The eye itself, of course. maps to minus infinity. Objects
very close to the eye might generate a divide error if the quo-
tient of z , and w, is too big for a floating-point number. This is
a nuisance. How can we avoid it‘? Typically we use a clipping
plane to remove all objects nearer than a certain distance.

But close objects that generate divide errors are not the big-
gest problem. The biggest problem is distant objects. What
happens to the resolution in Zfor objects that are far from the
eye? Let’s look at a numerical example. Suppose the field of
view is about 53 degrees. giving a value of D = 2. Suppose that
two points on a viewed object are at distances 2 = 500 and
Z = 501. The perspective transform moves these to the posi-
tions

and

D =cot (e) Z, = 2 ~ = 1.992016
p 0 ; ’1

78 IEEE Computer Graphics & Applications

Figure 9. Which reginns map to where.

This really starts to push the resolvable limits of single-preci-
sion floating-point numbers. And using double-precision num-
bers is the cowardly approach.

We can do everything in single precision if we know the ap-
proximate range of Z values (relative to the eye) for objects in
our scene. We just scale and translate the postperspective %,
values to spread more uniformly over the range 0 to I . The
easiest way to specify this scale and translation is in terms of
two Z values in preperspective (3D) space. We'll call these Z,,
for the near value and Zffor the far value. We then calculate
the scale and transformation that maps these values to 0 and
1, respectively. in 3DP space. A scale and translation in Z will
only modify the third column of the matrix. so let's solve for
the matrix elements that do the desired mapping. A point on
the near plane maps to

E = -AZ,,

We want this to map to Z , = 1, so its z and w components must
be equal. This gives us

The resultant matrix maps Z,, to 0, Zf to 1, and Z = m to
Zr/ (Zf- ZJ.

In my column "Nested Transformations and Blobby Man"
(CG&A, October 1987, pp. 61-66), I showed this same matrix,
but I wrote it a bit differently. To get to the form used in that
article, just multiply the above matrix by the constant factor
D sin (f ov i2) = cos (fov/2) to get jl: d :']

0 0 -QZ,, 0

where

s = sin (, fov/2)
c = cos (,fov/ 2)

Q = --s--
1 - Z,,iZf

I
YS

13DI
a b

-I.;.s
old plane

1 3 ~ ~] at infinity
I

There are two practical reasons for this way of specifying
the matrix. First. if the user specifies a field of view of zero de-
grees. the program will not blow up by attempting to calculate
an infinite cotangent. (Admittedly, though, the matrix will be
a bit weird.) Second, if the user wants to use an infinite value
for %, (a perfectly reasonable thing to do). the expression for
Q above reduces nicely to Q = s.

Now that we have the handles Z,, and %[to play with, let's
see how they solve our resolution problem. If we use the fairly
loose bounds around our object of Z,, = 400 and Zf = 600. the
perspective matrix gives us

You can check that Z = 400 maps to Z , = 0 and Z = 600 maps
to Z, = 1. The Z values of SO0 and SO1 map respectively into
Z, values of0.6 and 0.6048. which are much more readily dis-
tinguishable.

The location of Z,, and %/are usually associated with near
and far clipping planes. The problem is that users typically
don't want anything clipped off in the near and far directions.
so they make Z,, very small and %I very large. Making Zjlarge.
or even infinite. doesn't really cause problems, but making Z,,
small does. It basically defeats the purpose of our new formu-
lation. cramming the objects in the scene into a depth range
very close to Z, = 1. The depth resolution available to the ren-
dering algorithm is then completely lost. I have seen a lot of
people struggle with this. My advice is to place Z?, as far away
as you can manage. In fact. for some projects I have had to ani-
mate the value of Z,, to track an object as it flies around on the
screen.

Clipping implications

Line Clipping," CG&A, January 1991. pp. 98-105). I wrote
about a line-clipping algorithm that operated with the per-
spective transformation we derived here. Now that we have a
better understanding of homogeneous perspective. I want to
clear up a few statements made i n that article.

First. near and far clipping are optional. We must still. how-
ever. specify a value for Z,, and %,. After all. . s~nie value of Z is
going to map to Z, = 0. and .some other value of Z is going to
map to Z, = I . We can't do anything about that. But it's not

In an earlier article ("A Trip Down the Graphics Pipeline:

May 1993 79

necessary to clip to these planes. You do. however, need to bc
prepared to detect and avoid overflow for objects that come
close to the eye and produce large negative values of Z,. but
this is actually rather rare. You might as well do the clipping,
though. The overhead of clipping at Z,, and Z, as described in
the earlier column is pretty negligible.

Second, we can clip properly u f k r doing the u.' division. that
is. in 3DP space rather than in 3DHP space. 1 don't recom-
mend it. but it'spossihle. The reason we usually think it's im-
possible is as follows. Consider a line that has one endpoint in
front of the eye and one endpoint behind the eye. That is. the
line runs off the top of the screen. as in one of the long edges
of the wide rectangle in Figure 9. After the perspective multi-
plication. the endpoint behind the eye will have a negative
value for w,. If you clip in 3DHP space, the endpoint will have
y, > ~ $ 5 ~ . and the line will be clipped properly. When you look
at the line. you will see it disappear off the top of the screen.
Now suppose you did the homogeneous division before clip-
ping. The point behind the eye will have wrapped around in-
finity and may reappear with Y coordinates on the visiblc
portion of the screen. generating an external line segment.
This situation has traditionally been thought to be indistin-
guishable from an internal segment with both endpoints visi-
ble in front of the eye. There is a difference. however. The
behind-the-eye point has wrapped around infinity and has a Z

coordinate greater than Zr/(Zr- ZJ. To determine if a line
segment that has two visible endpoints is internal (requiring
no clipping) or external (requiring clipping). just test if the Z
coordinates of its two endpoints straddle Zf/(Zf- ZJ. This is
more trouble than it's worth perhaps. but it's possible.

Summary
The perspective transform turns space inside out. Flat poly-

gons might have their outlines distorted but they remain flat.
You can therefore use rendering algorithms in 3DP space that
linearly interpolate Z values across polygons. The plane Z = 0
(the eye plane) becomes the plane at infinity; the plane at in-
finity becomes Z , = Zi/Zi - Z,,. Shapes that start out strad-
dling the eye plane split in two.

From a user's point of view. the important message here is
to make the value of Z,, as big as possible. This makes it easier
for the renderer you are using to do depth comparisons. 3

Topology references

I . S. Barr. E x p e r i m e ~ r ~ in 7 b / i o / o , y ~ Thomas Y. Crowell. New York.

3. K.F. Riesenfeld. "Homogeneous Coordinates and Projective
1964.

Planes in Computcr Graphics."J. ACM. Vol. 1,No. 1. Jan. 1981
pp. so-ss.

XO IEEE Computer Graphics & Applications

