Attacks on WebView in the Android System:-

Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin
Dept. of Electrical Engineering & Computer Science, Syracuse University
Syracuse, New York, USA

ABSTRACT

WebView is an essential component in both Android and iOS
platforms, enabling smartphone and tablet apps to embed a
simple but powerful browser inside them. To achieve a bet-
ter interaction between apps and their embedded “browsers”,
WebView provides a number of APIs, allowing code in apps
to invoke and be invoked by the JavaScript code within
the web pages, intercept their events, and modify those
events. Using these features, apps can become customized
“browsers” for their intended web applications. Currently,
in the Android market, 86 percent of the top 20 most down-
loaded apps in 10 diverse categories use WebView.

The design of WebView changes the landscape of the Web,
especially from the security perspective. Two essential pieces
of the Web’s security infrastructure are weakened if Web-
View and its APIs are used: the Trusted Computing Base
(TCB) at the client side, and the sandbox protection im-
plemented by browsers. As results, many attacks can be
launched either against apps or by them. The objective of
this paper is to present these attacks, analyze their funda-
mental causes, and discuss potential solutions.

1. INTRODUCTION
Over the past two years, led by Apple and Google, the

smartphone and tablet industry has seen tremendous growth.

Currently, Apple’s iOS and Google’s Android platforms take
64 percent of the market share, with Android taking 37 per-
cent and iOS 27 percent [8]. Because of the appealing fea-
tures of these mobile devices, more and more people now
own either a smartphone, a tablet, or both. A recent Nielsen
survey showed that nearly one third of US mobile users had
smartphones at the end of 2010 [8].

A critical factor that has contributed to the wide-spread
adoption of smartphones and tablets is their software appli-
cations (simply referred to as apps by the industry). These
apps provide many innovative applications of mobile devices.

*This work was supported by Award No. 1017771 from the
US National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

There are many apps on the market; combined, iOS and
Android have over 500,000 apps, for both smartphones and
tablets, and the number is still increasing at a fast rate.

Among these apps, many are web-based. Namely, they get
contents from web servers using the standard HT'TP proto-
col, display the web contents, and allow users to interact
with the web servers. It seems that they are doing exactly
what can already be done by real browsers, but there are
significant differences. Browsers are designed to be generic,
and their features are independent from web applications.
Most web-based apps, on the contrary, are customized for
specific web applications. Because they primarily serve their
intended web applications, they can implement features that
are specific to those applications.

For example, Facebook Mobile is developed specifically
for Facebook to provide an easier and better way—compared
to Facebook’s web interface—to view Facebook content, in-
teract with its servers, and communicate with friends. Be-
cause of the richer experience gained from these customized
“browsers”, most users prefer to use them on mobile devices,
instead of the actual browsers. Many popular web applica-
tions have their dedicated apps, developed in-house or by
third parties.

What enables apps to be customized for specific web ap-
plications is a technology called WebView, adopted by both
Android and iOS (it is called UIWebView in iOS, but for
simplicity, we simply use WebView throughout this paper).
The WebView technology packages the basic functionalities
of browsers—such as page rendering, navigation, JavaScript
execution—into a class. Apps requiring these basic browser
functionalities can simply include the WebView library and
create an instance of WebView class. By doing so, apps es-
sentially embed a basic browser in them, and can thus use
it to display web contents or interact with web applications.
The use of WebView is pervasive. In the Android Market,
86 percent of the top 20 most downloaded Android apps in
each of the 10 categories use WebView.

What truly makes customization possible is the APIs pro-
vided by WebView. WebView not only allows apps to dis-
play web content, more importantly, through its APIs, it
enables apps to interact with the web content. The inter-
action is two-way: From apps to web pages, apps can in-
voke JavaScript code within web pages or insert their own
JavaScript code into web pages; apps can also monitor and
intercept the events occurred within web pages, and respond
to them. From web pages to apps, apps can register inter-
faces to WebView, so JavaScript code in the embedded web
pages can invoke these interfaces.

With such a two-way interaction mechanism between apps
and web pages, apps become more powerful than the tradi-
tional browsers. They can customize their interfaces based
on the web contents and the screen size, as well as provide
additional features beyond what is provided by the web ap-
plication, giving users a much richer experience than using
the generic browsers. For example, Facebook mobile makes
it easy to stay connected and share with friends, share sta-
tus updates from the home screen, chat with friends, look at
friends’ walls and user information, check in to places to get
deals, upload photos, share links, check messages, and watch
videos. These features, implemented in Java or Object C,
are beyond what Facebook can achieve with the traditional
web interface, through JavaScript and HTML.

Security situations. The pervasive use of WebView
and mobile devices has actually changed the security land-
scape of the Web. For many years, we were accustomed
to browsing the Web from a handful of familiar browsers,
such as IE, Firefox, Chrome, Safari, etc, all of which are de-
veloped by well-recognized companies, and we trust them.
Such a paradigm has been changed on smartphones and
tablets: thanks to Android’s WebView and Apple’s UIWeb-
View, apps can now become browsers, giving us hundreds of
thousands “browsers”. Most of them are not developed by
well-recognized companies, and their trustworthiness is not
guaranteed.

A Browser is a critical component in the Trusted Com-
puting Base (TCB) of the Web: Web applications rely on
browsers on the client side to secure their web contents,
cookies, JavaScript code, and HTTP requests. The main
reason why we use those selected browsers is that we trust
that they can serve as a TCB, and that their developers
have put a lot of time into security testing. When shifting
to those unknown “browsers”; the trust is gone, and so is the
TCB. We do not know whether these “browsers” are trust-
worthy, whether they have been through rigorous security
testing, or whether the developers even have adequate secu-
rity expertise. Therefore, WebView has weakened the TCB
of the Web infrastructure.

Another important security feature of browsers is sand-
box, which contains the behaviors of web pages inside the
browsers, preventing them from accessing the system re-
sources or the pages from other origins. Unfortunately, to
support better interactions between apps and web pages,
WebView allows apps to punch “holes” on the sandbox, cre-
ating a lot of opportunities for attacks.

Overview of our work and contribution. Our work
is the first systematic study on the security problems of We-
bView. The objective of this work is to conduct a compre-
hensive and systematic study of WebView’s impact on web
security, with a particular focus on identifying its fundamen-
tal causes. Through our systematic studies, we classified
some existing concerns that have been raised by the com-
munity [3,5-7] and the new attacks that are discovered by
us, based on the cause of the vulnerabilities. These attacks
reveal a fundamental problem caused by the weakening of
the TCB and sandbox in the WebView infrastructure. At-
tacks are possible if the apps themselves are malicious, or
if they are non-malicious but vulnerable. Android applica-
tions and web applications may become victim if they use
WebView or are loaded into WebView.

Although we have not observed many attacks related to

the relatively new WebView technology, it is just a matter
of time before we see them on a large scale. Based on the
number of applications that use WebView and the number
of people who have downloaded those applications, as we
will show in the case study section later, we believe that
the impact is quite significant. Both Google’s Android and
Apple’s i0S are vulnerable. In this paper, due to page lim-
itation, we only focus on Android, but we have successfully
achieved similar attacks on iOS.

Based on our studies, we discuss how we can continue
benefiting from WebView, and at the same time reduce the
risks. Since this paper primarily focuses on the attacks and
the development of the solutions is still on going, we will
leave the solution details to our future paper.

2. SHORT TUTORIAL ON WEBVIEW

In this paper, we will only focus on the Android platform.
We first give a brief tutorial on Android’s WebView compo-
nent. On the Android platform, WebView is a subclass of
View, and it is used to display web pages. Using WebView,
Android applications can easily embed a powerful browser
inside, using it not only to display web contents, but also to
interact with web servers. Embedding a browser inside An-
droid application can be easily done using the following ex-
ample (JavaScript is disabled by default within WebView):

WebView webView = new WebView(this);
webView.getSettings() .setJavaScriptEnabled(true);

Once the WebView is created, Android applications can
use its loadUrl API to load a web page if given a URL string.
The following code load the Facebook page into WebView:

webView.loadUrl ("http://www.facebook.com") ;

What makes WebView exciting is not only because it
serves simply as an embedded browser, but also because
it enables Android applications to interact with web pages
and web applications, making web applications and Android
applications tightly integrated. There are three types of in-
teractions that are widely used by Android applications; we
will discuss them in the rest of this section.

2.1 Event monitoring

Android applications can monitor the events occurred within
WebView. This is done through the hooks provided by the
WebViewClient class. WebViewClient provides a list of hook
functions, which are triggered when their intended events
have occurred inside WebView. Once triggered, these hook
functions can access the event information, and may change
the consequence of the events.

To use these hooks, Android applications should first cre-
ate a WebViewClient object, and then tell WebView to in-
voke the hooks in this object when the intended events have
occurred inside WebView. WebViewClient has already im-
plemented the default behaviors—basically doing nothing—
for all the hooks. If we want to change that, we can override
the hook functions with our own implementation. Let us see
the code in the following:

WebViewclient wvclient = New WebViewClient() {
// override the "shouldOverrideUrlLoading" hook.

public boolean shouldOverrideUrlLoading(WebView view,String url){

if (turl.startsWith("http://wuw.facebook.com")){
Intent i = new Intent("android,intent.action.VIEW",
Uri.parse(url));
startActivity(i);

}
}
// override the "onPageFinished" hook.
public void onPageFinished(WebView view, String url) { ...}
}

webView.setWebViewClient (wvclient);

In the example above, we override the shouldOverrideUrl-
Loading hook, which is triggered by the navigation event,
i.e., the user tries to navigate to another URL. The modified
hook ensures that the target URL is still from Facebook; if
not, the WebView will not load it; instead, the system’s de-
fault browser will be invoked to load the URL. In the same
example, we have also overridden the onPageFinished hook,
so we can do something when a page has finished loading.

2.2 Invoke Java from Javascript

WebView provides a mechanism for the JavaScript code
inside it to invoke Android apps’ Java code. The API used
for this purpose is called addJavascriptInterface. An-
droid applications can register Java objects to WebView
through this API, and all the public methods in these Java
objects can be invoked by the JavaScript code from inside
WebView.

In the following example, two Java objects are registered:
FileUtils and ContactManager. Their public methods are
also shown in the example. FileUtils allows the JavaScript
code inside WebView to access the Android’s file system,
and ContactManager allows the JavaScript code to access
the user’s contact list.

wv.addJavascriptInterface(new FileUtils(), "FUtil");
wv.addJavascriptInterface(new ContactManager(), "GC");

// The FileUtils class has the following methods:
public int write (String filename, String data, boolean append);
public String read (filename);

// The ContactManager class has the following methods:
public void searchPeople (String name, String number);
public ContactTriplet getContactData (String id);

Let us look at the FileUtils interface, which is binded to
WebView in the name of FUtil. JavaScript within the We-
bView can use FUtil to invoke the methods in FileUtils.
For example, the following JavaScript code in a web page
writes its data to a local file through FUtil.

<script>

filename = ’/data/data/com.livingsocial.www/’> + id +’_cache.txt’;

FUtil.write(filename, data, false);
</script>

2.3 Invoke JavaScript From Java

In addition to the JavaScript-to-Java interaction, Web-
View also supports the interaction in the opposite direction,
from Java to JavaScript. This is achieved via another We-
bView API called loadUrl. If the URL string starts with
"javascript:", followed by JavaScript code, the API will
execute this code within the context of the web page in-
side WebView. For example, the following Java code adds
a “Hello World” string to the page, and then sets the cookie
of the page to empty.

String str="<div><h2>Hello World</h2></div>";

webView.loadUrl("javascript:document.appendChild(str);");
webView.loadUrl("javascript:document.cookie=>";");

It can be seen from the above example that the JavaScript
code has the same privileges as that in the web page: they

can manipulate the page’s DOM objects and cookies, invoke
the JavaScript code within the page, send AJAX requests
to the server, etc. Using loadUrl, Android applications can
extend the functionalities of web applications, giving users
a much richer browsing experience.

3. THREAT MODELS

i| Malicious Android

Native Java Application
Code W .
WebVi ebView
Eb\hew\-—) Malicious |
e — :
}F\’ Binded el o Native

lava

m@. Obiects

Java Code

-/

——

(b) Malicious Apps

(a) Malicious Web Pages

Figure 1: Threat Models

The attacks discussed in this paper are categorized based
on two threat models, depicted in Figure 1. We give a high-
level overview of these models in this section, leaving the
attack details to later sections. It should be noted that we
will not discuss the attacks that are common in the Web,
such as cross-site scripting, cross-site request forgery, SQL
injection, etc., because these attacks are not specific to We-
bView: WebView is not immune to them, nor does it make
the situation worse.

Attacks from Malicious Web Pages. We study how
malicious web pages can attack Android applications. In
this attack model, we assume that apps are benign, and they
are intended to serve a web application, such as Facebook.
These apps can be both first-party (owned by the intended
web application) and third-party (owned by an independent
entity). The objective of attackers is to compromise the apps
and their intended web application. To achieve this, the
attackers need to trick the victim to load their web pages into
the apps, and then launch attacks on the target WebView.
The attack is depicted in Figure 1(a). Getting the victim to
load attacker’s web pages is not very difficult, and it can be
done through various means, such as emails, social networks,
advertisements, etc.

Attacks from Malicious Apps. We study how mali-
cious apps can attack web applications. In this threat model,
we assume that an attacker owns a malicious app, designed
specifically for a web application, e.g., Facebook. The goal
of the attacker is to directly launch attacks on the web ap-
plication. The attack is depicted in Figure 1(b). Obviously,
these attacks only make sense for third-party apps. To pre-
pare for such attacks, the attacker needs to allure users to
use their apps for the intended web application.

Although sounded difficult, the above goal is not difficult
to achieve at all, and many apps from the Android market
have already achieved that, although none of them is mali-
cious to the best of our knowledge. For example, one of the
most popular Facebook apps for Android is called Friend-
Caster for Facebook, which is developed by Handmark, not
Facebook; it has been downloaded for 500,000 times. The
app uses WebView to browse Facebook.

4. ATTACKS FROM WEB PAGES

4.1 Attacks through Holes on the Sandbox

Among all WebView’s APIs, addJavascriptInterface is
probably the most interesting one. It enables web applica-
tion’s JavaScript code to invoke Android application’s Java
code (or iOS application’s Objective-C code). Section 2 has
already given examples on how the API is used.

Allowing apps to bind an interface to WebView funda-
mentally changes the security of browsers, in particular, it
breaks the sandbox model adopted by all browsers. Be-
cause of the risk of running untrusted JavaScript programs
inside browsers, all browsers implement an access control
mechanism called sandboz to contain the behaviors of these
programs. The sandbox basically achieves two objectives:
isolate web pages from the system and isolate the web pages
of one origin from those of another. The second objective
mainly enforces the Same-Origin Policy (SOP).

When an application uses addJavascriptInterface to
attach an interface to WebView, it breaks browser’s sand-
box isolation, essentially creating holes on the sandboxes.
Through these holes, JavaScript programs are allowed to ac-
cess system resources, such as files, databases, camera, con-
tact, locations, etc. Once an interface is registered to Web-
View through addJavascriptInterface, it becomes global:
all pages loaded in the WebView can call this interface, and
access the same data maintained by the interface. This
makes it possible for web pages from one origin to affect
those from others, defeating SOP.

Opening holes on the sandbox to support new features
is not uncommon. For example, in the previous Web stan-
dard, the contents in two frames with different domains are
completely isolated. Introducing cross-frame communica-
tion for mashup applications to exchange data opens a hole
on the sandbox. However, with the proper access control
enforced on the hole, this new feature was perserved and
protected. The WebView’s new feature, however, was not
properly designed. The objective of this paper is not against
this feature, on the contrary, by pointing out where the fun-
damental flaw is, we can preserve Web’s feature and at the
same time make it secure.

Attacks on the System. We will use DroidGap [2] as an
example to illustrate the attack. DroidGap is not an appli-
cation by itself; it is an open-source package used by many
Android applications. Its goal is to enable developers to
write Android apps using mostly WebView and JavaScript
code, instead of using Java code. Obviously, to achieve this
goal, there should be a way to allow the JavaScript code to
access system resources, such as camera, GPS, file systems,
etc; otherwise, the functionalities of these apps will be quite
limited.

DroidGap breaks the sandbox barrier between JavaScript
code and the system through its Java classes, each pro-
viding interfaces to access a particular type of system re-
sources. The instances of these Java classes are registered
to WebView through the addJavascriptInterface API, so
JavaScript code in WebView can invoke their methods to
access system resources, as long as the app itself is granted
the necessary permissions. The following code shows how
DroidGap registers its interfaces to WebView.

private void bindBrowser (WebView wv){

wv.addJavascriptInterface(new Cameralauncher(wv, this), "GapCam");

wv.addJavascriptInterface(new GeoBroker(wv, this), "Geo");
wv.addJavascriptInterface(new FileUtils(wv), "FileUtil");
wv.addJavascriptInterface(new Storage(wv), "droidStorage"); }

In the code above, DroidGap registers several Java objects
for JavaScript to access system resources, including camera,
contact, GPS, file system, and database. Other than the file
system and database, accesses to the other system resources
need special privileges that must be assigned to an Android
app when it is installed. For instance, to access the camera,
the app needs to have android.permission.CAMERA. Once
an app is given a particular system permission, all the web
pages—intended or not—loaded into its WebView can use
that permission to access system resources, via the inter-
faces provided by DroidGap. If the pages are malicious, that
becomes attacks.

Assume there is an Android app written for Facebook; let
us call it MyFBApp. This app uses DroidGap and is given the
permission to access the contact list on the device. From the
DroidGap code, we can see that DroidGap binds a Java object
called ContactManager to WebView, allowing JavaScript code
to use its multiple interfaces, such as getContactsAndSend-
Back, to access the user’s contact list on the Android device.

As many Android apps designed to serve a dedicated web
application, MyFBApp is designed to serve Facebook only.
Therefore, if the web pages inside WebView only come from
Facebook, the risk is not very high, given that the web site
is reasonably trustworthy. The question is whether the app
can guarantee that all web pages inside WebView come from
Facebook. This is not easy to achieve. There are many ways
for the app’s WebView to load web pages from a third party.
In a typical approach, the attacker can send a URL to their
targeted user in Facebook. If the user clicks on the URL,
the attacker’s page can be loaded into WebView!, and its
JavaScript code can access the ContactManager interface to
steal the user’s personal contact information.

Another attack method is through iframes. Many web
pages nowadays contain iframes. For example, web adver-
tisements are often displayed in iframes. In Android, the
interfaces binded to WebView can be accessed by all the
pages inside it, including iframes. Therefore, any adver-
tisement placed in Facebook’s web page can now access the
user’s contact list. Not many people trust advertisement
networks with their personal information.

It should be noted that DroidGap is just an example that
uses the addJavascriptInterface API to punch “holes” on
the WebView’s sandbox. As we will show in our case stud-
ies, 30% Android apps use addJavascriptInterface. How
severe the problems of those apps are depends on the types
of interfaces they provide and the permissions assigned to
them.

The LivingSocial app is designed for the LivingSocial.
com web site. It uses DroidGap, but since the app does not
have the permission to access the contact list, even if a ma-
licious page is able to invoke the ContactManager interface,
its access to the contact list will be denied by the system.
The app is indeed given the permission to access the location
information though, so a malicious page can get the user’s
location using DroidGap’s GeoBroker interface.

Attacks on Web Applications. Using the sandbox-
breaking addJavascriptInterface API, web applications
can store their data on the device as files or databases, some-
thing that is impossible for the traditional browsers. Using
DroidGap, the LivingSocial app binds a file utility object

!There are mechanisms to prevent this, but the app devel-
opers have to specifically build that into the app logic.

(FileUtils) to WebView, so JavaScript code in WebView
can create, read/write, and delete files—only those belong-
ing to the app—on the device. The LivingSocial app uses
this utility to cache user’s data on the device, so even if the
device is offline, its users can still browse LivingSocial’s
cached information.

Unfortunately, if the LivingSocial app happens to load
a malicious web page in its WebView, or include such a page
in its iframe, attackers can use FileUtils to manipulate the
user’s cached data, including reading, deletion, addition, and
modification, all of which are supported by the interfaces
provided by FileUtils. As results, the integrity and pri-
vacy of user’s data for the LivingSocial web application is
compromised.

Like LivingSocial, many Android apps use the registered
interfaces to pull web application-specific data out of Web-
View, so they not only cache the data, but also use Java’s
powerful graphic interface to display the data in a nicer style,
providing a richer experience than that by the web interface.
The danger of such a usage of addJavascriptInterface is
that once the data are out of WebView, they are not pro-
tected by the sandbox’s same-origin policy, and any page
inside, regardless of where it comes from, can access and
potentially modify those data through the registered inter-
faces, essentially defeating the purpose of the same-origin
policy.

4.2 Attacks through Frame Confusion

In the Android system, interactions with several compo-
nents of the system are asynchronous, and require a call-
back mechanism to let the initiator know when the task
has completed. Therefore, when the JavaScript code inside
WebView initiates such interactions through the interface
binded to WebView, JavaScript code does not wait for the
results; instead, when the results are ready, the Java code
outside WebView will invoke a JavaScript function, passing
the results to the web page.

Let us use DroidGap’s ContactManager interface as an ex-
ample: after the binded Java object has gathered all the
necessary contact information from the mobile device, it
calls processResults, which invokes the JavaScript func-
tion contacts.droidFoundContact, passing the contact in-
formation to the web page. The invocation of the JavaScript
function is done through WebView’s 1oadUrl API. The code
is shown in the following:
public void processResults(Cursor paramCursor){

string result = paramCursor.decode();
string str8 = new StringBuilder().append("javascript:
navigator.contacts.droidFoundContact(...)").

localWebView.loadUrl(str8);
}

The JavaScript function contacts.droidFoundContact in
the example is more like a callback function handler regis-
tered by the LivingSocial web page. The use of the asyn-
chronous mode is quite common among Android applica-
tions. Unfortunately, if a page has frames (e.g. iframes),
the frame making the invocation may not be the one receiv-
ing the callback. This interesting and unexpected property
of WebView becomes a source of attacks.

Frame Confusion. In a web page with multiple frames,
we refer to the main web page as the main frame, and its
embedded frames as child frames. The following example
demonstrates that when a child frame invokes the Java in-

terface binded to the WebView, the code loaded by loadUrl
is executed in the context of the main frame.
Object obj = new Object(D{
public void showDomain()
{mWebView.loadUrl("javascript:alert(document.domain)");}
};

mWebView.addJavascriptInterface(obj, "demo");

The code above registers a Java object to the WebView as
an interface named “demo”, and within the object, a method
“showDomain” is defined. Using loadUrl, this method im-
mediately calls back to JavaScript to display the domain
name of the page.

When we invoke window.demo.showDomain() from a child
frame, the pop-up window actually displays the domain name
of the main frame, not the child frame, indicating that the
JavaScript code specified in 1oadUrl is actually executed in
the context of the main frame. Whether this is an intended
feature of WebView or an oversight is not clear. As results,
the combination of the addJavascriptInterface and load-
Url APIs creates a channel between child frames and the
main frame, and this channel opens a dangerous Pandora’s
box: if application developers are careless, the channel can
become a source of vulnerability, one that does not exist in
the real browsers.

Android Application Android Application

Interaction

13
Engine £}

Main-Frame |

Child-Frame

(a) Attack from child frame (b) Attack from main frame

Figure 2: Threat Models

Attack from Child Frame. In this attack, we look
at how a malicious web page in a child frame can attack
the main frame. We use the LivingSocial app as an ex-
ample. This app loads LivingSocial’s web pages into its
WebView (in the main frame), and we assume that one of
their iframes has loaded the attacker’s malicious page. This
is not uncommon because that is exactly how most adver-
tisements are embedded. The main objective of the attacker
is to inject code into the main frame to compromise the in-
tegrity of LivingSocial. Web browsers enforce the Same
Origin policy (SOP) by completely isolating the content of
the main frame and the child frame if they come from dif-
ferent origins. For example, the Javascript code in the child
frame (www.advertisment.com) cannot access the DOM tree
or cookies of the main frame (www.facebook.com). There-
fore, even if the content inside iframe is malicious, it cannot
and should not be able to compromise the page in the main
frame.

As we have shown earlier, LivingSocial binds Camer-
aLauncher to its WebView. In this class, a method called
failPicture is intended for the Java code to send an error
message to the web page if the camera fails to operate.

public class CameraLauncher{
public void failPicture(String paramString){
String str = "javascript:navigator.camera.fail(’";
str += paramString + "’);";

this.mAppView.loadUrl(str);
}
}

Unfortunately, since failPicture() is a public method
in Cameralauncher, which is already binded to WebView,
the method is accessible to the JavaScript code within We-
bView, from both child and main frames. In other words,
JavaScript code in a child frame can use this interface to
display an error message in the main frame, opening a chan-
nel between the child frame and the main frame. At the
first look, this channel may not seem to be a problem, but
those who are familiar with the SQL injection attack should
have no problem inserting some malicious JavaScript code
in ‘paramString’, like the following;:

x’); malicious JavaScript code; //

As results, the malicious code embedded in paramString
will now be executed in the main frame; it can manipu-
late the DOM objects of the main frame, access its cookies,
and even worse, send malicious AJAX requests to the web
server. This is exactly like the classical cross-site scripting
attack, except that in this case, the code is injected through
WebView, as illustrated in Figure 2(a).

Attack from Main Frame. In this attack, we look at
how a malicious web page in the main frame can attack the
pages in its child frames. We still use the LivingSocial as
an example. We assume that the attacker has successfully
tricked the LivingSocial app to load his/her malicious page
into the main frame of its WebView. Within the malicious
page, LivingSocial’s web page is loaded into a child frame.
The attacker can make the child frame as large as the main
frame, effectively hiding the main frame.

Suppose that DroidGap uses tokens to prevent unautho-
rized JavaScript code from invoking the interfaces registered
to WebView: the code invoking the interfaces must provide
a valid token; if not, the interfaces will simply do nothing.
An example is given in the following:

public class Storage{
public void QueryDatabase(SQLStat query, Token token){
if ('this.checkToken(token)) return;
else { /* Do the database query task and return result*/ }
}
}

With the above token mechanism, even if the JavaScript
code in the malicious main frame can still access the Query-
Database interface, its invocation cannot lead to an actual
database query. However, if the call is initiated by the Liv-
ingSocial web pages—which have the valid token—from
the child frame, the invocation is legitimate, and will lead
to a query. Unfortunately, when the query results are re-
turned to the caller by the app, using loadUrl, because of
the frame confusion problem, the query results are actually
passed to the main frame that belongs to the attacker. This
creates an information-leak channel. Figure 2(b) illustrates
the attack.

5. ATTACK FROM MALICIOUS APPS

For the attacks in this section, we assume that attackers
have written an intriguing Android application (e.g. games,
social network apps, etc.), and have successfully lured users
to visit the targeted web application servers from its Web-
View component.

5.1 The Problem: Trusted Computing Base

As we all know, security in any system must be built upon
a solid Trusted Computing Base (TCB), and web security is
no exception. Web applications rely on several TCB compo-
nents to achieve security; an essential component is browser.
If a user uses a browser that is not trustworthy or is com-
promised, his/her security with the web application can be
compromised. That is why we must use trusted browsers,
such as IE, Firefox, Chrome, Safari, etc.

WebView in the Android operating system changes the
TCB picture for the Web, because WebView is not isolated
from Android applications; on the contrary, WebView is de-
signed to enable a closer interaction between Android appli-
cations and web pages. Using WebView, Android applica-
tions can embed a browser in them, allowing them to display
web contents, as well as launch HTTP requests. To support
such an interaction, WebView comes with a number of APIs,
enabling Android application’s Java code to invoke or be in-
voked by the JavaScript code in the web pages. Moreover,
WebView allows Android applications to intercept and ma-
nipulate the events initiated by the web pages.

Essentially, WebView-embedding Android applications be-
come the “customized browsers”, but these browsers, usually
not developed by well-recognized trusted parties but poten-
tial malicious apps, cannot serve as a TCB anymore. If a
web application interacts with a malicious Android applica-
tion, it is equivalent to interacting with a malicious browser:
all the security mechanism it relies on from the browser is
gone. In this section, we will present several concrete at-
tacks.

However, this is differnt from the situation when attack-
ers have compromised the whole browser by controlling the
native binary code of the browser. In such a situation, at-
tackers control everything in the browser; Malicious Android
applications, however, only override the limited portion of
the APIs in WebView, and the rest of WebView can still
be protected by the underlying system. It is more like the
usage of “iFrame”; which is used to let websites embed pages
from other domains; the web browser enforces the Same Ori-
gin Policy to isolate each other if they come from a differ-
ent domain. Similar to the WebView situation, a malicious
webpage can embed a page from Facebook into one of its
iframes, the content of the Facebook page will be rendered
and displayed. With the underlying access control mecha-
nism enforced by the trusted native browser code, the Face-
book page cannot be compromised by its hosting page. Sim-
ilarly, if WebView is provided to applications as a blackbox
(i.e no APIs), it can still be counted as a TCB component
for the Web even if it is embedded into a malicious applica-
tion, because isolation mechanism provided by WebView is
implemented using WebKit, which is trustworthy.

5.2 Attack Methods

There are several ways to launch the attacks on WebView.
We classified them in two categories, based on the WebView
features that were taken advantaged of. The categories, il-
lustrated in Figure 3, are described in the following:

e JavaScript Injection: Using the functionalities pro-
vided by WebView, an Android app can directly in-
ject its own JavaScript code into any web page loaded
within the WebView component. This code, having
the same privileges as that from the web server, can

i
‘l Malicious Android Application

4

Hook Engine

Native

Victim Webpage
Java Code

Figure 3: Attack Methods

manipulate everything in the web page, as well as steal
its sensitive information.

e Event Sniffing and Hijacking: WebView provides
a number of hooks (APIs) to Android apps, allowing
them to better interact with the web page. Attackers
can intercept these APIs, and launch sniffing and hi-
jacking attacks from the outside of WebView, without
the needs to inject JavaScript code.

The categories of attacking methods are presented in a de-
creasing order of severity: if attackers can achieve JavaScript
injection, they do not need to use the second method. This
indicates that some of the WebView features are more pow-
erful than others. To fully understand the impact of We-
bView design on security, we study the potential attacks
associated with each feature, rather than focusing only on
the most powerful feature.

5.3 JavaScript Injection

Using WebView’s 1loadUrl() API, Android application
can inject arbitrary JavaScript code into the pages loaded by
the WebView component. The loadUrl() API receives an
argument of string type; if the string starts with “javascript:”,
WebView will treat the entire string as JavaScript code, and
execute it in the context of the web page that is currently dis-
played by the WebView component. This JavaScript code
has the same privileges as that included in the web page.
Essentially, the injected JavaScript code can manipulate the
DOM tree and cookies of the page.

WebView has an option named javascriptenable, with
False being its default value; namely, by default, WebView
does not execute any JavaScript code. However, this option
can be easily set to True by the application, and after that,
JavaScript code, embedded in the web page or injected by
the application, can be executed.

There are many ways to inject JavaScript code into web
page using loadUrl(). We give two examples here to illus-
trate the details.

JavaScript Code Injection. The following Java code
constructs a string that contains a short JavaScript program;
the program is injected into the web page loaded by Web-
View. When this program is executed in the context of the
web page, it fetches additional (malicious) code from an ex-
ternal web server, and executes it.

String js = "javascript: var newscript
= document.createElement (\"script\");";

js += "newscript.src=\"http://www.attack.com/malicious.js\";";
js += "document.body.appendChild(newscript);";
mWebView.loadUrl(js);

In the above example, the malicious code malicious.js
can launch attacks on the targeted web application from
within the web page. For example, if the web page is the
user’s Facebook page, the injected JavaScript code can delete
the user’s friends, post on his/her friends’ walls, modify the
user’s profiles, etc. Obviously, if the application is developed
by Facebook, none of these will happen, but some popular
Facebook apps for Android phones are indeed developed by
third parties.

Extracting Information From WebView. In addi-
tion to manipulating the contents/cookies of the web page,
the malicious application can also ask its injected JavaScript
code to send out sensitive information from the page. The
following example shows how an Android application ex-
tracts the cookie information from a targeted web page [3].

class MyJS {
public void SendSecret(String secret) {
. do whatever you want with the secret ...
}
}
webview.addJavascriptInterface(new MyJS(), "JsShow");
webview.setWebViewClient (new WebViewClient() {
public void onPageFinished(WebView view, String url){
view.loadUrl("javascript:
window.JsShow.SendSecret (document.cookie) ") ;

In the Java code above, the malicious application defines
a class called MyJS with a function SendSecret, which re-
ceives a string as the parameter. The program then regis-
ters an instance of MyJS to WebView. On finishing load-
ing the page, the application, using loadUrl, invokes win-
dow.JsShow.SendSecret, passing as the parameter what-
ever sensitive information the attacker wants to extract out
of page. In this case, the cookie information is sent out.

5.4 Event Sniffing and Hijacking

Besides the powerful interaction mechanism between An-
droid applications and web pages, WebView also exposes a
number of hooks to Android applications, allowing them to
intercept events, and potentially change the consequences of
events. The WebViewClient class defines 14 interfaces [26],
using which applications can register event handlers to We-
bView. When an event was triggered by users inside Web-
View, the corresponding handler will be invoked; two things
can then be done by this handler: observing the event and
changing the event, both of which can be achieved from out-
side of WebView without the need for JavaScript injection.

Event Sniffing: With those 14 hooks, host applications
can know almost everything that a user does within Web-
View, as long as they register an event handler. For ex-
ample, the onLoadResource hook is triggered whenever the
page inside WebView tries to load a resource, such as image,
video, flash contents, and imported css/JavaScript files. If
the host application registers an event handler to this hook,
it can observe what resources the page is trying to fetch,
leading to information leak. Hooks for other similar web
events are described in the following;:

e doUpdateVisitedHistory: Notify the host Android
application to update its visited links database. This

hook will be called every time a web page is loaded.
Using this hook, Android applications can get the list
of URLs that users have visited.

e onFormResubmission: Ask the host Android applica-
tion if the browser should re-send the form. Therefore,
the host application can get a copy of the data users
have typed in the form.

Using WebView hooks, host applications can also observe
all the keystrokes, touches, and clicks that occur within We-
bView. The hooks used for these purposes include the fol-
lowing: setOnFocusChangeListener, setOnClickListener,
and setOnTouchListener,

Event Hijacking: Using those WebView hooks, not only
can Android applications observe events, they can also hi-
jack events by modifying their content. Let us look at the
page navigation event. Whenever the page within the Web-
View component attempts to navigate to another URL, the
page navigation event occurs. WebView provides a hook
called shouldOverrideUrlLoading, which allows the host
application to intercept the navigation event by registering
an event handler to this hook. Once the event handler gets
executed, it can also modify the target URL associated with
the event, causing the navigation to a different URL. For ex-
ample, the following code snippet in an Android application
can redirect the page navigation to www.malicious.com.
webview.setWebViewClient (new WebViewClient() {
public boolean
shouldOverrideUrlLoading(WebView view, String url)
{ url="http://www.malicious.com";
view.loadUrl(url); return true;

}; ’

The consequence of the above attack is particularly more
severe when the victims are trying to navigate to an "https"
web page, believing that the certificate verification can pro-
tect them from redirection attack. This belief is true in
the DNS pharming attacks, i.e., even if attacks on DNS can
cause the navigation to be redirected to a fraudulent server,
the server cannot produce a valid certificate that matches
with the URL. This is not true anymore in the above at-
tack, because the URL itself is now modified (not the IP
address as in the DNS attacks); the certificate verification
will be based on the modified URL, not the original one.

For example, if a page within WebView tries to access
https://www.goodbank.com, the malicious application can
change the URL to https://www.badbank. com, basically redi-
recting the navigation to the latter URL. WebView’s certifi-
cate verification will only check whether or not the certificate
is valid using www.badbank.com, not www.goodbank.com.

Several other WebView hooks can also lead to the event
hijacking attacks. Due to the page limitation and their sim-
ilarity to the one discussed above, we will not enumerate
them in this paper.

6. CASE STUDIES

To understand how risky the situation in Android system
is, we turned our attention to the Android Market. Our goal
is not to look for malicious or vulnerable apps, but instead
to study how Android apps use WebView. We would like
to see how ubiquitous the WebView is in Android apps, and
how many apps depend on WebView’s potentially dangerous
features.

6.1 Sample Collection & Methodology

Apps on the Android Market are placed into categories,
and we chose 10 in our studies, including Books & Reference,
Business, Communication, Entertainment, Finance, News &
Magazines, Shopping, Social, Transportation, and Travel &
Local. We picked the top 20 most downloaded free apps in
each category as the samples for our case studies.

Each Android app consists of several files, all packaged
into a single APK file for distribution. The actual programs,
written in Java, are included in the APK file in the form
of Dalvik bytecode. We use the decompilation tool called
Dex2Jar [4] to convert the Dalvik bytecode back to the Java
source code. Due to the limitations of the tools, only 132
apps were successfully decompiled, and they serve as the
basis for our analysis. We realized that Dex2jar has some
limitations, but it was the best available tool that we could
find. Since our case studies are mostly done manually, the
limitations of the tool, other than reducing the number of
samples, will unlikely affect our results.

6.2 Usage of WebView

We first study how many apps are actually using Web-
View. We scan the Java code in our 132 samples, looking
for places where the WebView class is used. Surprisingly,
we have found that 86 percent (113 out of 132) of apps use
WebView. We plot our results in Figure 4. Percentage for
each category is plotted in Figure 5.

First Party WebView Apps
Non-WebView Apps
3rd Party WebView Apps

Figure 4: WebView Usage Among Apps

B Non-WebView Apps 3rd Party WebView Apps

M First Party WebView Apps

Figure 5: WebView Usage Based On Categories

For the attacks from malicious apps, it only makes sense
if the apps and their targeted web applications belong to
different entities, i.e., only the third-party apps have moti-
vations to become malicious. Among the 113 apps that use
WebView, 49 are third-party apps; despite the fact, these
49 apps are quite popular among users. Based on the data
from the Android Market, their average rating is 4.386 out
of 5, and their average downloads range from 1,148,700 to
2,813,200. Although these apps are not malicious, they are

fully capable of launching attacks on their intended web ap-
plications. When that happens, given their popularity, the
damage will be substantial.

6.3 Usage of the WebView Hooks

Some of the WebView APIs are security sensitive. To
understand how prevalent they have been used, especially
by third-party apps, we have gathered statistics on their
usage, and depict the results in Figure 6, in which we group
them based on the types of attacks we discussed in Section 5.

Among the 49 third-party apps, all use loadUrl, 46 use
shouldOverrideUrlloading, and 25 use addJavascriptIn-
terface. We also found that the other APIs, including

doUpdateVisitedHistory, onFormResubmission, and onLoad-

Resource are relatively less popular. Overall, our results
show that WebView’s security-sensitive APIs are widely used.
If these apps are malicious, the potential damages are sig-
nificant.

1
0.9
0.8
0.7

0.6

1Npeo|

0.5
0.4
03

uoISSILNSaYWI04{uUo

‘ 324n0osaypeoquo

0.2

aseyiajupndudsenerppe
ulpeo|JNapLIdAOPINOYS

0.1

.Moxs!Hpausu\awpdnop

o
JavaScript Injection Event Sniffing Event Hijacking

Figure 6: API Usages by Third-Party Apps

6.4 Usage of addJavascriptInterface

Attacks from malicious web pages are made possible by
the use of the addJavascriptInterface API in Android
apps, first-party and third-party. We would like to see how
many apps actually use this API. We randomly chose 60
apps from our sample pool, decompiled them into Java code,
and then searched for the usage of the API. Figure 7 depicts
the results, showing that 30 percent of these apps (18 of
them) do use the API.

Non-addlavascriptinterface B WebView Apps with
WebView Apps addJavascriptinterface and use
Browser to load external web pages

WebView Apps with
addJavascriptinterface and use
WebView to load external web pages

Figure 7: Source Code Investigation

Using the addJavascriptInterface API does not auto-
matically make an app potentially vulnerable. To make at-
tacks possible, attackers need to somehow get their mali-
cious pages into the victim’s WebView. This goal may not
be achievable. WebView provides an hook called
shouldOverrideUrlLoading, which is triggered every time a
navigation event occurs inside WebView. Android apps can
implement their own logic to process the navigation event.

Using this hook, apps can restrict what pages can be
loaded into WebView, by checking whether the navigation

destination URL is allowed or not; if not, they can simply
change the URL, or invoke the default browser in the sys-
tem to display the URL, rather than doing so in WebView.
With such a mechanism, an app for Facebook, for exam-
ple, can ensure that all the pages displayed in its WebView
are from Facebook, essentially preventing malicious external
pages from being loaded into WebView.

We have studied the 18 Android apps that use addJavascript-

Interface, and see how they treat the navigation event.
Among them, 7 use the API in the admob package, devel-
oped by Google for displaying advertisement. Google did a
good job in restricting the WebView in admob to only dis-
play advertisements; if users click on one of the ads, admob
will invoke the default Android browser to display the tar-
get page, not in its WebView. Among the rest 11, which
use addJavascriptInterface in their own logic, 6 treat the
navigation event similarly to admob, and the other 5 do allow
their WebViews to load external web pages, making them
potentially vulnerable. Our results are depicted in Figure 7.

Although using the shouldOverrideUrlLoading API does
help apps defend against some attacks from malicious pages,
it does not work if the malicious pages are inside iframes.
The API is only triggered when an navigation event occurs
within the main frame of the page, not the child frame. That
is, even with the restriction implemented in the API, a page
can still load arbitrary external pages within its child frames,
making the attacks possible.

7. RELATED WORK

There are several studies focusing on Android’s security
architecture. The work [9] discussed potential improvement
for the Android permission model, empirically analyzed the
permissions in 1100 Android applications and visualized them
using self-Organizing Map. However, since the attacks we
proposed in the paper is not due to the flaw of security model
of Android, assigning applications the least of privilege can-
not prevent the attacks but only mitigate the impact of the
attacks because of the limited privileges granted to the ap-
plication.

Enck et al. proposes the Kirin security service for An-
droid, which performs lightweight certification of applica-
tions to mitigate malware at installation time [12]. Enck et
al. also propose “TaintDroid”, an efficient, system-wide dy-
namic taint tracking and analysis system capable of simulta-
neously tracking multiple sources of sensitive data [11]. Felt
et al. have built a tool called “Stowaway”, which automati-
cally detects excess privilege when installing third-party An-
droid applications [13]. A systematic analysis of the threats
in the Android Market was conducted by [27]. Those stud-
ies deal with the fact that mobile systems frequently fail to
provide users with adequate control over and visibility into
how third-party applications use their private data. The fo-
cus of our work is different from these studies: we focus on
the security problems of WebView.

With mobile browsers playing more and more important
roles in telecommunication [22], browsers themselves have
become an active area of research. Microbrowsers designed
for surfing the Internet on mobile device become have more
and more popular [14]. Initially, research would focus on how
to optimize Web content to be effectively rendered on mobile
browsers [15,21]. Recently, a lot of work has focused on
analyzing the existing mobile browser models and proposing
multiple new models. The paper [28] discusses two patterns

of full browsers and C/S framework browsers, and proposes
a new collaborative working styles for mobile browsers. The
work [24] presents a proxy-based mobile web browser with
rich experiences and better visual quality.

Due to the extended use of WebView in Android appli-
cations, several Android books [19,23] have chapters intro-
ducing how to use WebView, although none has addressed
the security problems of WebView. Some discussions on
WebView’s security problems can be found at mainstream
security-related website like ZDNet [7], and the most rele-
vant discussions were published as blogs [3,5, 6].

There are numerous studies that focus on enforcing fine-
grained access control at the client side, including Caja [1,
10], ConScript [20], Content Security Policy [25], Escudo [16],
Contego [17], work by Maffeis at al. [18], etc. Although
they were not targeting the problems with WebView, some
of their ideas can be extended to defend the attacks on We-
bView. We will pursue these ideas in our future work.

8. CONCLUSION AND FUTURE WORK

The WebView technology in the Android system enables
apps to bring a much richer experience to users, but unfor-
tunately, at the cost of security. In this paper, we have dis-
cussed a number of attacks on WebView, either by malicious
apps or against non-malicious apps. We have identified two
fundamental causes of the attacks: weakening of the TCB
and sandbox. Although we have not observed any real at-
tack yet, through our case studies, we have shown that the
condition for launching these attacks is already matured,
and the potential victims are in the millions; it is just a
matter of time before we see real and large-scale attacks.

In our on-going work, we are developing solutions to se-
cure WebView. Our goal is to defend against the attacks
on WebView by building desirable security features in We-
bView.

9. ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd,
Patrick Traynor, for many detailed and helpful comments.

10. REFERENCES

[1] Caja. http://code.google.com/p/google-caja/.

[2] Droidgap. http://www.phonegap.com.

[3] Extracting html from a webview. http://lexandera.
com/2009/01/extracting-html-from-a-webview/.

[4] A tool for converting android’s .dex format to java’s
.class format. http://code.google.com/p/dex2jar.

[5] Injecting javascript into a webview.
http://lexandera.com/2009/01/
injecting-javascript-into-a-webview/, 2009.

[6] Intercepting page loads in webview.
http://lexandera.com/2009/02/
intercepting-page-loads-in-webview/, 2009.

[7] Researchers expose android webkit browser exploit.
http://www.zdnet.co.uk/news/security-threats/
2010/11/08/researchers-expose-android-webkit/
/-browser-exploit-40090787/, November 2010.

[8] U.S. smartphone market: WhoaAZs the most wanted?
http://blog.nielsen.com/nielsenwire/, 2011.

[9] David Barrera, H. G iine § Kayacik, Paul C. van
Oorschot, and Anil Somayaji. A methodology for

(10]
(11]

(12]

(13]
(14]
(15]

(16]

(17]

(18]

(19]
(20]

(21]

(22]
23]

(24]

(25]

[26]

27]

(28]

empirical analysis of permission-based security models
and its application to android. In Proceedings of the
17th ACM conference on Computer and
communications security, CCS 10, pages 73-84, New
York, NY, USA, 2010. ACM.

D. Crockford. ADSafe. http://www.adsafe.org.

W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI'10, pages 1-6, Berkeley, CA,
USA, 2010. USENIX Association.

W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 235245,
New York, NY, USA, 2009. ACM.

A. P. Felt, E. Chin, S. Hanna, D. Song, and

D. Wagner. Android permissions demystified, 2011.

E. A. Hernandez. War of the mobile browsers. IEEFE
Pervasive Computing, 8:82-85, January 2009.

A. Jaaksi. Developing mobile browsers in a product
line. IEEE Software, 19:73-80, 2002.

K. Jayaraman, W. Du, B. Rajagopalan, and S. J.
Chapin. Escudo: A fine-grained protection model for
web browsers. In Proceedings of the 30th International
Conference on Distributed Computing Systems
(ICDCS), Genoa, Italy, June 21-25 2010.

T. Luo and W. Du. Contego: Capability-based access
control for web browsers. In TRUST’11, 2011.

S. Maffeis, J. C. Mitchell, and A. Taly. Object
capabilities and isolation of untrusted web
applications. In IEEE Symposium on Security and
Privacy, 2010.

D. McMahon. Learn android programming, 2011.

L. A. Meyerovich and B. Livshits. Conscript:
Specifying and enforcing fine-grained security policies
for javascript in the browser. In IEEE Symposium on
Security and Privacy, pages 481-496, 2010.

M. Palviainen and T. Laakko. Mimeframe - a
framework for statically and dynamically composed
adaptable mobile browsers. 2006.

F. Reynolds. Web 2.0-in your hand. IEEE Pervasive
Computing, 8:86—-88, January 2009.

S. Hashimi S. Komatineni, D. MacLean. Pro android
3, 2011.

H. Shen, Z. Pan, H. Sun, Y. Lu, and S. Li. A
proxy-based mobile web browser. In Proceedings of the
international conference on Multimedia, MM ’10,
pages 763-766, New York, NY, USA, 2010. ACM.

S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In WWW, 2010.
Android Development Team. Webviewclient hooks list.
http://developer.android.com/reference/
android/webkit/WebViewClient.html.

T. Vennon and D. Stroop. Threat analysis of the
android market, 2010.

P. Ye. Research on mobile browser’s model and
evaluation. Structure, pages 712-715, 2010.

